

(Received: 31 October 2000; in final form: 3 May 2001)

and the second second

Abstract

Introduction

and a second sec and a second sec and a second sec and a second sec and a set of the set o and the second sec and a set of the set o and the second sec before due to the large size of the system.

^{*} Author for correspondence.

Methods

Results and discussion

All the PM3 (in vacuum) and HF/3-21g* (in acetone) and a set of the set o tetrathiafulvalene moiety takes part in a face-to-face interac-sically correspond to a C_{2h} geometry, in the HF/3-21g* and a second sec and the second sec and a second sec and a second sec and the second sec and the second sec

	Exp.	PM3 (in vacuum)	B3LYP/6-31G* (in vacuum)	HF/3-21g* (in acetone)
r_1 (Å)	6.8	7.9	7.9	7.7
r_2 (Å)	10.3	9.8	9.9	9.9
r3 (Å)	11.5	11.4	11.5	11.4
θ (deg.)	19	0	34	50
φ (deg.)	23	41	39	35
ϕ (deg.)	14	0	0	0

results clearly show that an *ab initio* method is more reliable than a semiempirical one in modeling the inclusion complexation of 1^{4+} .

<text>

Table 2. Stabilization energies upon complexation (kJ/mol)

Species	PM3	HF/3-21g*	B3LYP/6-31g*
	//PM3	//HF/3-21g*	//HF/3-21g*
	(in vacuum)	(in Me ₂ CO)	(in Me ₂ CO)
Complex of 2	-14.35	-37.24	-62.35
Complex of 3	-135.04	-464.1	-180.52

Conclusion

and the second s

p-phenylene) with tetrathiafulvalenes. The results, in agreement with the experimental observations, indicate that the better electron-donor property of the pyrrolo-annelated tetrathiafulvalene makes it a better substrate than tetrathiafulvalene itself.

Acknowledgements

We are grateful to the NSFC for the financial support. We also thank Prof. Stoddart for providing us with the crystalline structure data of 1⁴⁺.

References

- (a) M.C.T. Fyfe and J.F. Stoddart: Acc. Chem. Res. **30**, 393 (1997). (b) V. Balzani, M. Gómez-López and J.F. Stoddart: Acc. Chem. Res. **31**, 405 (1998). (c) V. Balzani, A. Credi, F.M. Raymo and J.F. Stoddart: Angew. Chem. Int. Ed. Engl. **39**, 3348 (2000).

- 5. (a) T. Jorgensen, T.K. Hansen and J. Becher: Chem. Soc. Rev. 23, 41 (1994). (b) M.B. Nielsen, C. Lomholt and J. Becher: Chem. Soc. Rev. 29, 153 (2000).
- 6. J. Lau, M.B. Nielsen, N. Thorup, M.P. Cava and J. Becher: *Eur. J. Org. Chem.* 3335 (1999).
- 7. P.L. Anelli, P.R. Ashton, R. Ballardini, V. Balzani, M. Delgado, M.T. Gandolfi, T.T. Goodnow, A.E. Kaifer, D. Philp, M. Pietraszkiewcz, L. Prodi, M.V. Reddington, A.M.Z. Slawin, N. Spencer, J.F. Stoddart, C. Vicent and D.S. Williams: J. Am. Chem. Soc. 114, 193 (1992).